Frane sismoindotte
Ricadute applicative nella valutazione del rischio sismico

Roberto W. Romeo
Dipartimento di Scienze della Terra, della Vita e dell’Ambiente
Università degli Studi di Urbino, Carlo Bo
Rischio: le conseguenze di una minaccia

- La propensione al dissesto nei confronti degli eventi naturali costituisce una minaccia per i beni esposti (pericolosità)
- La presenza di beni esposti (strutturali, infrastrutturali e socio-economici) rende la minaccia un potenziale disastro
- La perdita (=rischio) dipende dalla capacità di danneggiamento degli eventi, dalla tipologia e quantità di beni esposti e dalla loro capacità di resistenza (grado di resilienza)
- La sua valutazione attiene pertanto alla SICUREZZA
Relationship of Site Response with Seismic Hazard, Risk and Design

Earthquake faulting (seismic-moment)
- Energy release (stress-drop)
- Seismic shaking (ground-motion)

Surface or capable faulting (slip-offset)

Tsunami (run-up)

SITE RESPONSE

Ground failures
- Landslides
- Liquefaction
- Secondary hazards (e.g., dam break)

Damages
- Inertial loads
- Soil-structure interaction

Amplifications

Basin effects (surface-waves entrapment)

Layering effects (seismic impedance)

Morphological effects (topography and buried structures)

Unstable behaviour

Stable behaviour

Built environment

Primary effects

Secondary effects

Losses direct and indirect

from Romeo, IAEA 2012
Cause di danneggiamento a strutture

a) Primary cause of building damage in each earthquake

- Tsunami
- Landslide
- Shaking

b) Secondary cause of building damage in each earthquake

- Shaking
- Landslide
- Liquefaction
- Tsunami
- Fault rupture
- None

After Bird & Bommer, 2004
Cause di danneggiamento a infrastrutture di comunicazione

a) Cause of damage, earthquakes with significant transportation damage

- Fault rupture
- Tsunami
- Liquefaction
- Landslide
- Shaking

b) Cause of damage, earthquakes with moderate transportation damage

- Fault rupture
- Shaking
- Liquefaction
- Landslide
Cause di danneggiamento a infrastrutture di servizio (lifelines)

a) Cause of damage, earthquakes with significant utilities damage
 - Fault rupture
 - Tsunami
 - Liquefaction
 - Landslide
 - Shaking

b) Cause of damage, earthquakes with moderate utilities damage
 - Fault rupture
 - Liquefaction
 - Landslide
 - Shaking

After Bird & Bommer, 2004
Perdite Dirette e Indirette

• Lo scuotimento (GS) è spesso la causa principale delle perdite dirette (danneggiamento), ma le deformazioni del suolo (GF) che interessano infrastrutture e servizi (lifelines) sono spesso la causa delle perdite indirette dovute alla interruzione delle attività produttive e delle operazioni di soccorso, i cui costi possono superare largamente i costi dovuti alle perdite dirette (es. Kobe, 1995: 11 vs. 100 billion $)
Vulnerabilità dei sistemi

- Le vie di trasporto e comunicazione (con la sola eccezione dei ponti) sono in genere più vulnerabili alle GF (frane in primis) che al GS.
- Le infrastrutture costiere o limitrofe a corsi d’acqua sono particolarmente soggette a liquefazione e spandimenti laterali a causa della presenza di terreni recenti soffici e al loro grado di saturazione.
- I danni alle lifelines sono spesso la combinazione di danni a sistemi e componenti che possono a loro volta indurre danni collaterali. Es.: i gasdotti possono provocare incendi e la simultanea rottura di acquedotti ne impedisce il controllo favorendone la diffusione (effetto domino).
Effetto scala

- Nell’intero cratere del terremoto GS è la causa principale di danno, tuttavia localmente le GF possono risultare la causa dominante dei danni e delle perdite, come nel caso del terremoto di Izmit (Turchia 1999) dove nella città di Adapazari i danni furono dovuti prevalentemente alla liquefazione. Ma anche in Italia si è avuto recentemente un esempio simile ...
Piano seminterrato della chiesa di San Carlo
Rialzo del piano di calpestio di 60 cm per liquefazione
Wu-Feng primary school (0.8g): 1999 Chi-Chi (Taiwan) M7.6
Danni indipendenti vs. danni cumulati

- \(P(DS > ds | GS \cup GF) = P(ds | GS) \ OR \ P(ds | GF) = P(ds | GS) + P(ds | GF) - P(DS > ds | GS \cap GF) \)
 dove il danno è dovuto a GS oppure a GF (es. basculamento di edifici senza lesioni da taglio, collasso da frana senza che edifici contigui abbiano subito danni evidenti)

- \(P(DS > ds | GS \cap GF) = P(ds | GS) \ AND \ P(ds | GF) = P(ds | GS) \cdot P(ds | GF) \)
 dove il danno è dato dall’effetto combinato di GS e GF (es. cedimenti e/o perdita di capacità portante dovuto all’eccentricità del carico prodotta dai danni dovuti al GS)
Only GS

Kocaeli 1999, M7.4

GS followed by GF

Chi-Chi 1999, M7.6
Las Colinas (St. Tecla) landslide, El Salvador 2001 M7.6: cause of damage and death
Nikawa landslide
1999 Kobe, M6.9
11 houses destroyed
34 fatalities
Only cause of death
Calitri landslide, Irpinia 1980 M6.9: only damage
Immaterialità delle cause
LE DIMENSIONI DEL FENOMENO: LA SISMICITÀ

Es. le Marche ricadono in 2^ zona
Es. le Marche hanno un rapporto di area in frana sulla superficie totale di circa il 20%
CEDIT, http://www.ceri.uniroma1.it/cn/gis.jsp

from Martino & Romeo, 2013
SCENARI DI PERICOLOSI È RISCHIO DA FRANA CON PARTICOLARE RIGUARDO ALL'INNESCO DA TERREMOTI

A cura di Roberto M. Roncalli e Pierpaolo Tiberti
Diagramma di flusso metodologico

1. Geology
 - Geomechanical properties (static capacity of resistance)
 - Ground shaking (seismic demand)
 - EC8 ground conditions (site amplifications)

2. Landslide inventory
3. Slope gradient

4. Rainfall distribution
5. Hydraulic conditions

6. Static slope performance: $P_f (FS)$

7. Critical acceleration, A_c (seismic capacity of resistance)

8. Seismic slope performance: $P_f (FD)$, $P(Dc)$

9. Exposed Assets
10. RISK
Critical Displacement Probability Map
Outer Apennines seismic sources
Wet conditions

$P(D > D_c | D \leq 0)$

- Red: > 95%
- Orange: 75 - 95%
- Yellow: 50 - 75%
- Green: 25 - 50%
- Light blue: 5 - 25%
- Beige: < 5%

La minaccia
Landslide Risk Map - Outer Apennines seismic sources
Wet conditions

145 out of about 1,500 landslides

Percentiles
- > 95%
- 75 - 95%
- 50 - 75%
- 25 - 50%
- 5 - 25%
- < 5%
- none

Assets
- Highway
- Main Road
- Railway
- Aqueduct

La perdita (rischio)
Principii base delle NTC: sicurezza e prestazioni (stati limite)

- La **sicurezza** concerne le **prestazioni** che un’opera o parti di essa devono assolvere in relazione agli **stati limite** che si possono verificare durante la sua vita tecnica utile.

- Lo **stato limite** è una condizione che non dev’essere superata sotto scenari di carico di predeterminata probabilità di occorrenza.

- Per la valutazione della **sicurezza** si devono pertanto adottare opportuni **criteri probabilistici** scientificamente comprovati.
Esempio di calcolo della probabilità di rottura (**collasso, SLe**)

Pericolo

Es.: verifica allo SLC di un pendio in zona sismica.

\[P_{F|t} = P[FS \leq 1 \mid Ag] \cdot P[Ag \geq a \mid t] \]

\[Ag \cdot (P[0.05, t=50y]) \geq 0.18 \]

\[P[FS \leq 1 \mid Ag \geq 0.18g] \approx 0.4 \]

\[P_{F|t} = 0.05 \times 0.4 = 0.02 \]

\[P_{S|t} = 1 - P_{F|t} = 1 - 0.02 = 0.98 \]

Probabilità annuale:

\[P_{F} \approx P_{F|t}/t = 0.02/50 = 4 \cdot 10^{-4} \]

\[(P_{F} = - \ln[1-P_{F|t}]/t = 4.04 \cdot 10^{-4}) \]
Approccio rigoroso

\[P_F = \int_{-\infty}^{+\infty} f_S(s) F_R(s) \, ds \]

S = domanda (Ag)
R = capacità (FS<1|Ag)
\(f_S \) = pmf domanda
\(F_R \) = CDF capacità

Probabilità annua di collasso:
\[(P_C = - \ln[1-P_F|t]/t = -\ln[1-0.115]/50 = 2.44 \cdot 10^{-3}\]
circa 6 volte maggiore

<table>
<thead>
<tr>
<th>Ag (g)</th>
<th>(f_S(Ag))</th>
<th>(F_R(Ag))</th>
<th>(P_F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.33333</td>
<td>0.00135</td>
<td>0</td>
</tr>
<tr>
<td>0.01</td>
<td>13.1536</td>
<td>0.002555</td>
<td>0.000192</td>
</tr>
<tr>
<td>0.02</td>
<td>11.28373</td>
<td>0.004661</td>
<td>0.000312</td>
</tr>
<tr>
<td>0.03</td>
<td>9.679681</td>
<td>0.008198</td>
<td>0.000489</td>
</tr>
<tr>
<td>0.04</td>
<td>8.303654</td>
<td>0.013903</td>
<td>0.000737</td>
</tr>
<tr>
<td>0.05</td>
<td>7.123238</td>
<td>0.02275</td>
<td>0.001072</td>
</tr>
<tr>
<td>0.06</td>
<td>6.110625</td>
<td>0.03593</td>
<td>0.001505</td>
</tr>
<tr>
<td>0.07</td>
<td>5.241962</td>
<td>0.054799</td>
<td>0.00204</td>
</tr>
<tr>
<td>0.08</td>
<td>4.496784</td>
<td>0.080757</td>
<td>0.002668</td>
</tr>
<tr>
<td>0.09</td>
<td>3.857538</td>
<td>0.11507</td>
<td>0.003373</td>
</tr>
<tr>
<td>0.1</td>
<td>3.309165</td>
<td>0.158655</td>
<td>0.004123</td>
</tr>
<tr>
<td>0.11</td>
<td>2.838747</td>
<td>0.211855</td>
<td>0.004877</td>
</tr>
<tr>
<td>0.12</td>
<td>2.435201</td>
<td>0.274253</td>
<td>0.005587</td>
</tr>
<tr>
<td>0.13</td>
<td>2.089022</td>
<td>0.344578</td>
<td>0.006204</td>
</tr>
<tr>
<td>0.14</td>
<td>1.792054</td>
<td>0.42074</td>
<td>0.006687</td>
</tr>
<tr>
<td>0.15</td>
<td>1.537303</td>
<td>0.5</td>
<td>0.007004</td>
</tr>
<tr>
<td>0.16</td>
<td>1.318766</td>
<td>0.57926</td>
<td>0.00714</td>
</tr>
<tr>
<td>0.17</td>
<td>1.131295</td>
<td>0.655422</td>
<td>0.007096</td>
</tr>
<tr>
<td>0.18</td>
<td>0.970474</td>
<td>0.725747</td>
<td>0.006888</td>
</tr>
<tr>
<td>0.19</td>
<td>0.832515</td>
<td>0.788145</td>
<td>0.006543</td>
</tr>
<tr>
<td>0.2</td>
<td>0.714168</td>
<td>0.841345</td>
<td>0.006095</td>
</tr>
<tr>
<td>0.21</td>
<td>0.612645</td>
<td>0.88493</td>
<td>0.005582</td>
</tr>
<tr>
<td>0.22</td>
<td>0.525553</td>
<td>0.919243</td>
<td>0.005036</td>
</tr>
<tr>
<td>0.23</td>
<td>0.450843</td>
<td>0.945201</td>
<td>0.004488</td>
</tr>
<tr>
<td>0.24</td>
<td>0.386753</td>
<td>0.96407</td>
<td>0.003958</td>
</tr>
<tr>
<td>0.25</td>
<td>0.331773</td>
<td>0.97725</td>
<td>0.003464</td>
</tr>
<tr>
<td>0.26</td>
<td>0.28461</td>
<td>0.986097</td>
<td>0.003012</td>
</tr>
<tr>
<td>0.27</td>
<td>0.244151</td>
<td>0.991802</td>
<td>0.002607</td>
</tr>
<tr>
<td>0.28</td>
<td>0.209443</td>
<td>0.995339</td>
<td>0.002249</td>
</tr>
<tr>
<td>0.29</td>
<td>0.179669</td>
<td>0.997445</td>
<td>0.001936</td>
</tr>
<tr>
<td>0.3</td>
<td>0.154128</td>
<td>0.99865</td>
<td>0.001665</td>
</tr>
</tbody>
</table>

0.114629
RISCHIO ACCETTABILE(!!)

No. di potenziali vittime ; 10^{-6} PIL (milioni di €)

ACCETTABILE

TOLLERABILE

NON TOLLERABILE

MARGINALMENTE ACCETTABILE
PER CONCLUDERE

• Le GF hanno la potenzialità di incidere considerevolmente sui danni e le perdite dovute al GS e di produrre effetti negativi di lungo termine
• Tuttavia, siccome l’instabilità dei versanti è un processo naturale di raggiungimento di un equilibrio, ciò che rende una frana un DISASTRO è solo la presenza umana
• Pertanto, ciò che conta in definitiva + che la pericolosità è il RISCHIO (= perdita), MA ...
• ... mentre la fragilità del sistema è investigabile e controllabile ...

QUANTO SIAMO CONFIDENTI CIRCA LA CONOSCENZA DEL FENOMENO?
LA GEOLOGIA è UNA SCIENZA ESATTÀ?
LA GEOLOGIA SAREBBE UNA SCIENZA ESATTA
... SFORTUNATAMENTE IL 99,7% DI ESSA È SEPOLTA ...
... E IL RESTANTE 0,3% è SPESSO ahimè ... MALE INTERPRETATO!